• Polymer characterization

    Physical characterization of polymer films – how to measure surface, optical, and bulk properties

  • Whether your polymer films are used for packaging, plastic bags, photographic films, substrates for flexible solar cells, flexible displays, touch panels, or circuit boards – their composition always determines their properties. The requirements they need to fulfill are as diverse as their fields of application and a thorough investigation of their properties is necessary for modifying their formulation or simply testing their quality.

    Investigation of thin films and nanofilms (thickness <1 µm)

    Very thin (~1 µm and less) polymeric films, which often consist of multiple layers, are often used as electric insulation or protection against corrosion for electronic components such as printed circuit boards (PCB) or smartphone parts as well as refractive films on optical lenses. They can also be used as sensors for humidity or lithography, antibacterial coatings of stents, or even for genome sequencing.

    To test thin films and nanofilms you can use the  nanoscratch test method for measuring the adhesion and scratch resistance of each layer of the thin film or the final material with one instrument.

    Besides adhesion and scratch resistance, also the nanostructure is of great interest. Find out the most about your material by performing:

    • topography measurements
    • measurements of mechanical properties
    • measurements of electrical properties 

    Find the right instrument for your application

    Investigation of thick films (thickness >1 µm)

    Protective or decorative films such as protective paints for cars, white appliances, or epoxy paints for floor lining must resist damage, which is mainly caused by scratching. In the case of metals, paints protect the base material mainly against corrosion but also against scratches.

    Use the most efficient and most reliable  scratch test technique to assess the films’ scratch resistance and find out about how well the coating resists damage under precisely defined conditions. Those tests also provide information about its elastic recovery.

    In order to find out how a film performs under certain environmental conditions, such as temperature, humidity, or stress conditions  dynamic mechanical analysis is the right choice to ensure that the final product quality meets users’ expectations.

    When developing your films you want to be sure that the surface finish will be perfect. That’s why you want to characterize your polymer melts and also design the processing operations accordingly. Comprehensive  rheological characterization helps you achieve all this.

    Find the right instrument for your application

    Investigation of adhesive films

    As an increasing number of industrial and consumer products are adhered rather than joined, welded, soldered, screwed, or clamped, adhesive films have a bright future ahead. But this also means that they have to meet a great variety of demands:

    You need to investigate their strength, elasticity, sustainability, and even special features like conductivity or resistance. Make use of the many possibilities of  atomic force microscopy and analyze your adhesives down to the nanometer scale.

    Its  force curve analysis tells you all you want to know about the adhesive force. Learn even more about your adhesive film though quantitative measurements of its elastic properties.

    Adhesive films are often produced by coating a base layer with a liquid adhesive layer, which needs to be cured during the process.

    Make use of the benefits of  rheological characterization for determining the curing kinetics of the adhesive layer, thereby finding the ideal design of the production process.

    So that the stickiness of your adhesive film is not lost below a certain temperature use  dynamic mechanical analysis in order to determine the temperature range in which the film will stick to other surfaces.

    Find the right instrument for your application

  • Find the right polymer characterization solution

    No matter if thin films and nanofilms, thick films, or adhesive films – their composition always determines their properties. It is essential to thoroughly investigate these properties so that your polymer films can fulfill the specific requirements in any field of application. A thorough investigation is also a prerequisite of formulation modifications and quality control.  

    Solution Your benefit Instrument

    The produced film has low surface quality (rippled surface).

    Perform rheological measurements to characterize the viscoelasticity of the used raw material in order to optimize process conditions.

    Consistent quality of the produced films, without surface imperfections or defects

     

    The packaging film shows increased failure rates in tropical/arid/cold climates.

    Analyze the mechanical performance of the film in controlled-humidity DMA tests.

    The guarantee that your product reaches your customer in good condition, independent of climate conditions

     

    The film ruptures during use.

    Perform tensile testing to determine the strain- or stress at break. Perform dynamic mechanical analysis to investigate film brittleness (as indicated by the measured damping factor).

    Improved product quality based on a better selection of materials tailored to the product requirements

     

    Adhesive residues remain on the surface after peeling off the adhesive tape (incompletely cured adhesive layer).

    Investigate the aging behavior of the adhesive depending on temperature and time.

    Higher product quality due to optimized material formulations and processing conditions

     

    The paint scratches too easily.

    Perform precisely controlled scratch tests to measure the scratch resistance.

    Feedback about scratch resistance of paints with new formulations

     

    The polymer films and paints must recover after scratch damage.

    Perform precisely defined scratch tests to measure the depth during the scratch and the depth after the recovery.

    Testing different films and coatings and optimizing the formulation to achieve the best possible recovery of the paint or the film after scratch damage

     

    The polymer film/paint has to resist aging.

    Perform indentation measurements with a creep segment to measure the creep properties of the film/paint.

    Possibility to rank different films/paints according to their creep properties and select the best ones

     

    The produced film has insufficient optical quality, it is shallow (high variation in dispersion).

    Perform refractive index measurements at different wavelengths and determine the dispersion.

    Consistent quality of the produced films. Shallow polymers can be already sorted out during the development of new products.

     

    Adhesive tapes need to be characterized.

    Perform a 3D map of the distribution of adhesive materials.

    Process and quality control of adhesive tape production

     

    New adhesive materials need to be developed or characterized.

    Carry out force curve measurements for quantitative adhesion force analysis.

    Faster development cycles to reach target specifications

     

    Checking the real nanostructure and mechanical properties of multilayer polymers for each layer

    Performing topography measurement and force distance curves with AFM

    Getting the roughness information and quantitative values of the elastic modulus on the sub-nanometer scale

     

    Quantification of the mixture ratio of different polymers of thin films in order to find the perfect material for the desired end use

    Performing tapping mode or CRAI mode measurements showing the distribution of different polymers, getting the mixture ratio

    Showing the distribution of different polymers on the nanometer scale, quantification of the mixture ratio for optimal material characterization

     

    You did not find your specific situation? Anton Paar still has the solution for your challenge. Just contact us for more information. 

  • Learn more about polymer characterization from leading experts in the field

    Get an insight into how academic experts in the field of polymer characterization use Anton Paar instruments as part of their daily work. Read these interviews and find out how Anton Paar instruments are used in academic research for gaining deeper insights into polymers and developing innovative polymer products.

    • Silicone coating analysis with scratch testing

      “We found out that the scratch behavior (adhesion, cohesion) was different going from thin to thick when compared to from thick to thin.”

      Professor James Kohl, University of San Diego 

      Read more

    • AFM in the food packaging industry

      “AFM has been used to quantify the reaggregation phenomenon of nanoparticles once the coating formed on the surface of the plastic film.”

      Professor Stefano Farris, University of Milan

      Read more