A Chemist's Guide to Sample Preparation

A Chemist's Guide to Sample Preparation

Basics of Microwave-assisted Acid Digestion in a Nutshell – How to Get Started with Anton Paar Instrumentation

> by Markus Michaelis, Alexander Stadler

➤ Copyright@2021 by Anton Paar GmbH, Austria.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form by any means electronic, mechanical, photocopying or otherwise without first obtaining written permission of the copyright owner.

> Published by Anton Paar GmbH. Printed in the EU.

Anton Paar GmbH

Anton-Paar-Str. 20

A-8054 Graz

Austria - Europe

Tel.: +43 316 257-0
Fax: +43 316 257-257
E-Mail: info@anton-paar.com
Web: www.anton-paar.com

2nd Edition, August 2021 1st Edition, January 2021

Contents

1.	Introduction	7
1.1.	About the Book	7
1.2.	Anton Paar and Microwaves	7
1.2.1.	Alternative Sample-Preparation Equipment	9
Part A – Ho	ow To get Started with Acid Digestion	
2.	Basics of Acid Digestion	10
2.1.	Why Acid Digestion?	10
2.2.	Commonly Used Reagents	11
2.2.1.	Specific Aspects of Hydrofluoric Acid	15
2.3.	Types of Transfer into Liquid Form	16
2.3.	Error Sources in Sample Preparation	17
2.4.1.	Contamination	17
2.4.2.	Loss of Analyte	19
2.4.3.	Incomplete Digestion Processes	20
2.5.	Typical Analytical Methods	21
2.5.1.	ICP-MS	21
2.5.2.	ICP-OES	22
2.5.3.	MIP-OES	23
2.5.4.	AAS	24
2.6.	Why Microwave Heating?	25
2.6.1.	Dielectric Heating	26
2.6.2.	Benefits of Microwave Heating Compared to Conventional Heating	28
2.6.3.	Microwave Cavity Variations	29
2.7.	It's All About the Temperature	32
2.8.	Dealing with the Reaction Pressure	34
2.8.1.	Vapor Pressure	34

2.8.2.	Generation of reaction gases	36
2.8.3.	Estimation of Vessel Pressure	38
2.8.4.	Pressure Control	39
2.8.4.1.	Sealed vessels	39
2.8.4.2.	Closed vessels with venting capability	40
2.8.5.	Limitations from Vapor Pressure	41
2.8.5.1.	Sealed vessels	42
2.8.5.2.	Closed vessels with venting capability	42
2.8.6.	Correlation between Sample Weight and Pressure	43
2.9.	Understanding the Use of Sensors	44
2.9.1.	Temperature Sensors	44
2.9.2.	Pressure Control	46
2.10.	Power vs. Temperature Programming	46
2.11.	How to Choose the Right Instrument Configuration	47
2.11.1.	Sealed Vessels vs. Closed Vessels with Venting Capability	49
2.11.2.	Vessel material	50
2.11.3.	Vial Types in Autoclave Instruments	51
3.	Method Development Routines	52
3.1.	Access Application Knowledge	53
3.2.	Working with Generic Methods	56
3.2.1.	Reactive Samples	56
3.2.2.	Inert Samples	60
3.2.3.	Using Standard Methods	62
3.3.1.	Increase Oxidation of Organic Matter	63
3.3.2.	Decrease Reactivity of HNO₃	64
3.3.3.	H ₂ O ₂ Addition – Why and How Much?	64
3.3.4.	Optimizing Parameters	65
3.3.5.	Why to Use Pre-reaction Steps	67

4.	Troubleshooting in Oven-based Systems	70
4.1.	Target Temperature Not Reached	70
4.2.	Significant Deviation of IR Temperatures	71
4.3.	Pressure Rate Increase Alarm	71
4.4.	Maintenance and Care of Sealed Vessels	73
4.5.	How to Check and Control Venting Activity in Closed Vessels with Venting Capability	74
4.5.1.	How to Avoid Acid Venting	75
4.5.2.	Leakage	75
-		

Part B – Anton Paar Instrumentation and its Features

5.	Oven-based Systems	76
5.1.	Introduction to Oven-based Systems	76
5.1.1.	Multiwave GO Plus	77
5.1.2.	Multiwave 5000	78
5.2.	Rotor Overview	79
5.3.	Special Accessories for Multiwave 5000	83
5.3.1.	Microwave Induced Combustion	83
5.3.2.	Disposable Glass Inserts	84
5.3.3.	Evaporation Accessory	85
5.3.4.	Drying Rotor	86
5.4.	Applications in Multiwave GO Plus	87
5.4.1.	Fat-rich Food Samples	88
5.4.2.	Organic Solvents & Alcoholic Beverages	88
5.4.3.	Polymer Samples	89
5.4.4.	Petroleum Samples	89
5.4.5.	Metals and Alloys	90

7.3.

7.4.

Application Matrix

List of Common Standard Methods

6.	Autoclave Systems	91
6.1.	Microwave	91
	Digestion System Multiwave 7000	
6.2.	Workflow - Differences from Oven-based Systems	92
6.3.	Racks and Vials	93
6.3.1.	Pressure-sealed vials	93
6.3.2.	Sealed quartz vessels	95
6.4.	Samples for Multiwave 7000	95
6.4.1.	Samples with Unknown Reaction Behavior	97
6.4.2.	Increasing the Sample Weight	97
6.4.3.	Samples Containing Organic Solvents	98
6.5.	Methods and Programs	98
6.5.1.	How to Adapt Generic Methods	99
7.	Appendix	101
7.1.	Abbreviations	101
7.2.	Glossary	102

103

105