Friction, Wear, and Lubrication
Anton Paar develops, produces, distributes, and provides support for analytical instruments used in research, development, and quality control worldwide.

Knowledge and control of the materials' tribological behavior are essential before putting them into service. It is important to conduct tribology experiments and analyses under in-service conditions, as the materials' tribological properties are influenced by many external factors, such as:

- Contact pressure
- Movement mode
- Movement velocity
- Test duration
- Temperature
- Humidity
- Vacuum level
- Gaseous composition
- and many more ...

Anton Paar's range of tribological testing solutions covers various experimental conditions. It includes standard pin-on-disk models as well as tribometers for high temperatures, nanomaterials, humidity, and vacuum applications.

Anton Paar's tribometer portfolio gives you the widest range of options available on the market. Under the previous brand name CSM Instruments, Anton Paar has been designing and distributing tribometers for more than 35 years. Another high-quality choice is Anton Paar's MCR tribometer range, employing the EC measuring drive based on 20 years of experience. These instruments are used in research and high-end development applications.

Tribology is the science and technology of interacting surfaces in relative motion and of related subjects and practices. Tribology involves the study of friction, wear, and lubrication.

The force known as friction is defined as the resistance encountered by one body moving over another. Whenever two surfaces move against each other, wear will occur, causing damage to surfaces and progressive loss of material. In order to reduce this damage, thin layers of gas, liquids, and solids are applied between two surfaces to enable ideal motion. This is known as lubrication.
Measuring principles

Anton Paar tribometers are unique instruments designed for high-precision measurements of the friction, wear, and lubrication behavior of various tribosystems. With both TRB\(^3\) tribometers and MCR tribometers, measurements can be carried out in dry or lubricated mode.

In a tribology test of a solid-solid contact with a TRB\(^3\) tribometer with or without lubricant, a static partner with a sphere, pin, or flat geometry is loaded onto a sample with a precisely known force. The static partner is mounted on a stiff cantilever designed as a precise frictionless force transducer. The friction force is determined by measuring the deflection of the cantilever. The wear of the sample and static partner is calculated from the materials' volume lost during the test.

For MCR tribometers, typical contact geometries such as round-on-flat, flat-on-flat, round-on-round are available but also more complex scenarios such as the testing for roller bearings can be realized. The controlled normal force is applied by the MCR drive moving up and down. The torque is controlled and measured by an EC motor. The frictional force is calculated from the torque. The MCR tribometer, equipped with an air bearing, enables measurements over several decades of speed.

Motion Modes

TRB\(^3\) tribometers feature rotating, linear reciprocating, and rotational reciprocating modes. In this way, the instruments can simulate different types of motion encountered in service. Moreover, measurement errors caused by mechanical misalignment between loading and rotating axes are cancelled out by the unique rotational reciprocating motion mode. Rotational as well as oscillatory motions can be realized on an MCR tribometer. Oscillatory measurements enable the evaluation of the complex behavior of tribosystems.

Environmental Conditions

Anton Paar’s standard pin-on-disk tribometers are equipped with enclosures so that controlled atmospheres of varying humidity and gas compositions can be maintained during the measurement. Dedicated humidity and vacuum chambers are developed to allow for state-of-art environmental control. High and low temperature options are available to meet extreme testing conditions. MCR tribometers enable temperature control using either Peltier-based or electrical heating systems. MCR tribometers can be extended with temperature devices (accessories) to apply a certain controlled atmosphere (gas and relative humidity).

Customized Solutions

Anton Paar tribometers are easily adapted to satisfy different customer testing needs. These customized solutions range from online wear depth measurement and online profilometry to electrical contact resistance, tribo-corrosion measurements, precise heating and cooling, liquid testing, and many more.

International Standards

Anton Paar’s TRB\(^3\) tribometer fully complies with the ASTM G99, G133, and DIN 50324 standards.
High Temperature Tribometer (THT 1000 °C)

With its unique dual heating elements layout, THT 1000 °C brings high-temperature tribology testing to a new level of reliability and stability. Differential friction force measurement ensures negligible signal drift at extremely high temperatures. Careful design of the static partner and sample holders ensure trouble-free measurements for the user – even during tribology tests at 1000 °C.

Unique features:
- Dual friction force sensors to minimize thermal drift errors in friction measurement
- Top and circular heating elements combined with water cooling system to allow for precise and homogeneous temperature control up to 1000 °C
- Independent normal load application and friction force measurement design to avoid mutual influence between different force signals
- Highly linear and precise elastic arm for friction load measurement
- Compliant with ASTM G99, ASTM G133, and DIN 50324 standards

High Temperature Tribometer (THT 800 °C)

The analysis of materials’ friction and wear properties at elevated temperature is becoming increasingly important, especially for the development and quality control of cutting tools, combustion engines, and power plants. To meet this demand of material testing, Anton Paar offers its powerful high-temperature tribometers, which heat the sample homogeneously, and accurately control sample temperature up to 800 °C to simulate the materials’ in-service condition.

Unique features:
- Dual friction force sensors to minimize thermal drift error on friction measurement
- Circular heating element and water cooling system to allow for precise and homogeneous temperature control up to 800 °C
- Independent normal load application and friction force measurement design to avoid mutual influence between different force signals
- Highly linear and precise elastic arm for friction load measurement
- Compliant with ASTM G99, ASTM G133, and DIN 50324 standards

Vacuum Tribometer / Vacuum High Temperature Tribometer (TRB V/ THT V)

Anton Paar’s vacuum tribometers are designed to provide precisely controlled vacuum levels down to 10⁻⁷ mbar or gaseous environments for friction and wear studies at room or high temperatures. The professional vacuum system allows the user to reach the required atmospheric condition in a well-controlled and reliable manner.

Unique features:
- Primary (10⁻² mbar) or secondary (10⁻⁷ mbar) vacuum control
- Mixture of up to three kinds of gases, with precise feedback control on pressure or on mass flow
- Independent normal load application and friction force measurement design to avoid mutual influence between different force signals
- Highly linear and precise elastic arm for friction load measurement
- Compliant with ASTM G99, ASTM G133, and DIN 50324 standards

Relative Humidity Tribometer (TRB RH)

With the high-quality relative humidity chamber, Anton Paar offers a unique solution for simulating friction and wear at different humidity and temperature levels, both of which are homogeneously distributed inside the chamber. The materials’ tribological properties sensitive to humidity can then be studied with ease.

Unique features:
- Dual wall thermally insulated humidity chamber to guarantee homogeneous 15 % to 95 % relative humidity environment without water condensation
- Homogeneous temperature control inside the chamber between 10 °C and 40 °C
- Independent normal load application and friction force measurement design to avoid mutual influence between different force signals
- Highly linear and precise elastic arm for friction load measurement
- Compliant with ASTM G99, ASTM G133, and DIN 50324 standards

Vacuum Tribometer / Vacuum High Temperature Tribometer (TRB V/ THT V)

Anton Paar's vacuum tribometers are designed to provide precisely controlled vacuum levels down to 10⁻⁷ mbar or gaseous environments for friction and wear studies at room or high temperatures. The professional vacuum system allows the user to reach the required atmospheric condition in a well-controlled and reliable manner.

Unique features:
- Primary (10⁻² mbar) or secondary (10⁻⁷ mbar) vacuum control
- Mixture of up to three kinds of gases, with precise feedback control on pressure or on mass flow
- Independent normal load application and friction force measurement design to avoid mutual influence between different force signals
- Highly linear and precise elastic arm for friction load measurement
- Compliant with ASTM G99, ASTM G133, and DIN 50324 standards

Relative Humidity Tribometer (TRB RH)

With the high-quality relative humidity chamber, Anton Paar offers a unique solution for simulating friction and wear at different humidity and temperature levels, both of which are homogeneously distributed inside the chamber. The materials’ tribological properties sensitive to humidity can then be studied with ease.

Unique features:
- Dual wall thermally insulated humidity chamber to guarantee homogeneous 15 % to 95 % relative humidity environment without water condensation
- Homogeneous temperature control inside the chamber between 10 °C and 40 °C
- Independent normal load application and friction force measurement design to avoid mutual influence between different force signals
- Highly linear and precise elastic arm for friction load measurement
- Compliant with ASTM G99, ASTM G133, and DIN 50324 standards
MCR Tribometer: An evolution in tribological testing

Employ the precise motion and normal force control of MCR tribometers for your tribological measurements. Expand your traditional tribological tests by opening up entirely new measuring ranges on one single instrument. MCR tribometers come with numerous test setups and contact geometries to suit your requirements. Benefit from Anton Paar’s decades of experience in precision instrumentation.

Unique features:
- Seamlessly measure break-away forces as well as static and limiting friction of dry and lubricated contacts.
- Plot Stribeck curves over nine decades of sliding speeds – from a few nanometers per second to 3.3 meters per second
- Food and beverages, lubes and greases, polymers, ophthalmics, biomedicine, etc.
- All the benefits of the extended atmosphere control
- Temperature range between -160 °C and 600 °C
- Humidity control 5 % to 95 %
- In addition to the existing setups, there is always scope for customizing setups to perfectly suit your application.

Ball-on-three-plates: (or T-PTD200) Full motion flexibility and precision

The ball-on-three-plates setup is a well-established method for measuring both lubricated as well as dry tribological systems. Different measuring geometries (plates, cylinders) are available and can be adapted to specific sample needs.

The heart of this setup is the T-PTD 200 tribology cell which ensures precise alignment and therefore a homogeneous distribution of normal forces on the measured specimen.

Unique features:
- Nine decades of sliding speeds – from a few nanometers per second to 3.3 meters per second
- Contact pressure of a few kPa to 1.2 GPa
- Broad range of applications – from food and beverages to lubricants and greases, metal working fluids, etc.
- Wide range of specimen and holders catering to individual applications
- The Peltier heating system allows excellent temperature control from -40 °C up to 200 °C.

Ball-on-three-plates: (or T-BTP) Extended atmosphere control

This setup allows for measurements in a temperature range from -160 °C to 600 °C or with relative humidity between 5 % and 95 %. Normal forces as low as 0.1 N can be applied. The stiffness of the measuring system can be adjusted by the patented spring system that transfers the normal forces applied in vertical direction (Pat. No. AT514726A1).

Unique features:
- Enjoy complete motion and force ranges of the MCR Tribometer with added low-force sensitivity.
- Employ advantages of Convection Temperature Device (CTD) for tribological measurements.
- Temperature range between -160 °C and 600 °C
- Humidity control 5 % to 95 %
- Spring stiffness adjustable in z-direction offering excellent damping characteristics

Pin-on-disk (or T-PID/44)

The T-PID/44 allows for round-on-flat, flat-on-flat, or line contacts in dry and lubricated conditions. The spring stiffness can be adjusted in the z-direction, which enables optimal damping characteristics. Various specimen materials can be fixed in the upper and lower holder allowing a broad range of applications.

Unique features:
- Contact geometries ranging from flat-on-flat contact to point contact, abrasive contact, line contact, etc.
- Temperature range between -30 °C and 190 °C
- Diverse applications – asphalt, lubes and greases, cosmetics, food and beverages, ice, cartilage, bio-medicine, etc.
- Make use of the flat-on-flat contact geometry for low contact pressure applications.
- Possibility to adapt the setup to accommodate a ring-on-disc test configuration
Specifications

<table>
<thead>
<tr>
<th></th>
<th>Nano Tribometer (NTR)</th>
<th>Standard Tribometer (TRB)</th>
<th>High Temperature Tribometer (THT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Force Range</td>
<td>5 µN to 1000 mN*</td>
<td>up to 60 N</td>
<td>up to 60 N</td>
</tr>
<tr>
<td>Normal Force Resolution</td>
<td>0.003 µN</td>
<td>(dead weight)</td>
<td>(dead weight)</td>
</tr>
<tr>
<td>Friction Force Range</td>
<td>5 µN to 1000 mN*</td>
<td>up to 20 N (5 N option)</td>
<td>up to 10 N (20 N option)</td>
</tr>
<tr>
<td>Friction Force Resolution</td>
<td>0.006 µN</td>
<td>0.06 mN (0.015 mN option)</td>
<td>0.00 mN</td>
</tr>
<tr>
<td>Rotating Movement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>1 rpm to 200 rpm</td>
<td>0.2 rpm to 2000 rpm</td>
<td>0.3 rpm to 600 rpm</td>
</tr>
<tr>
<td>Radius</td>
<td>100 µm to 20 mm</td>
<td>up to 40 mm</td>
<td>0.5 mm to 35 mm</td>
</tr>
<tr>
<td>Maximum Torque</td>
<td></td>
<td>450 mN.m</td>
<td>450 mN.m</td>
</tr>
<tr>
<td>Linear Reciprocating Movement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke Length</td>
<td>up to 5 mm**</td>
<td>up to 60 mm</td>
<td>-</td>
</tr>
<tr>
<td>Speed</td>
<td>up to 26.6 mm/s**</td>
<td>up to 370 mm/s</td>
<td>-</td>
</tr>
<tr>
<td>Frequency</td>
<td>0.01 Hz to 10 Hz**</td>
<td>0.01 Hz to 10 Hz</td>
<td>-</td>
</tr>
<tr>
<td>Rotational Reciprocating Movement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>1 rpm to 300 rpm</td>
<td>0.2 rpm to 2000 rpm</td>
<td>0.3 rpm to 600 rpm</td>
</tr>
<tr>
<td>Frequency</td>
<td>-</td>
<td>0.01 Hz to 7 Hz</td>
<td>0.01 Hz to 7 Hz</td>
</tr>
<tr>
<td>Angular Amplitude</td>
<td>±10° to ±150°</td>
<td>±5° to ±150°</td>
<td>±10° to ±150°</td>
</tr>
<tr>
<td>Angular Resolution</td>
<td>0.1°</td>
<td>0.1°</td>
<td>0.1°</td>
</tr>
<tr>
<td>Options</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online Wear Depth</td>
<td>up to 250 um</td>
<td>up to 2 mm</td>
<td>up to 1.2 mm</td>
</tr>
<tr>
<td>Heating Capability</td>
<td>-</td>
<td>up to 450 °C in dry condition</td>
<td>up to 1000 °C</td>
</tr>
<tr>
<td>Electrical Contact Resistance</td>
<td>up to 1000 Ohms</td>
<td>up to 1000 Ohms</td>
<td>up to 1000 Ohms</td>
</tr>
<tr>
<td>Vacuum Level</td>
<td>-</td>
<td>down to 10⁻⁷ mbar</td>
<td>down to 10⁻⁷ mbar</td>
</tr>
<tr>
<td>Relative Humidity Level</td>
<td>-</td>
<td>15 % to 95 %</td>
<td>15 % to 95 %</td>
</tr>
</tbody>
</table>

* Nano Tribometer normal load and friction load specifications depend on the choices of different cantilevers (High Resolution, Standard, and High Load Cantilevers).
** Nano Tribometer linear reciprocating movement specifications depend on the choices of different linear stages.

1) Linear reciprocating movement specifications depend on the combination of stroke length, frequency, and mass on the stage.
2) Rotational reciprocating movement specifications depend on the combination of angular amplitude, frequency, and mass on the stage.

Software Features:

- Continuous real-time data acquisition of friction signal during measurement
- Programmable incremental speed and normal force in one measurement
- User-defined testing sequences in one measurement
- Matrix testing with the Nano Tribometer in linear reciprocating movement mode
- Statistics mode for measurement data analysis
- Adjustable data acquisition rate up to 400 Hz for recording frictional phenomena with high fidelity
- Hertzian stress modeling software: better testing parameter selection for tribological analysis
- Multi-cycle angular reciprocating mode to cancel errors due to misalignment between normal load and sample rotating axes
- Friction force and friction coefficient threshold auto-protection
- Automatic calibration procedure for friction force, rotating speed, and measurement radius
- Automatic generation of reports for a set of measurements

MCR Tribometer Software Features:

- Easily set and control tribological measures such as normal force, break-away torque, speed, deflection, temperature, humidity (optional), etc.
- Enjoy the pre-defined test-templates for Stribeck tests, static friction tests, wear tests, etc.
- Measurements are clearly defined in individual action blocks.
- Use the Test Designer to guide you through defining your own experiment.
- Combine several measurement actions with the advantage of comfortable data structure.
- Create multi-axis graphs to display the data the way you want.
- Run post-test analysis of data and create individual analysis routines.
- Automatically export data and reports at the end of the test.