Dynamic shear rheometers for asphalt
The requirements for asphalt binder and bitumen, especially with regards to their elasticity and flexibility, have increased significantly in recent years. Particularly in road construction, new asphalt concepts are being constantly developed to withstand the heavy strains caused by the ever-increasing traffic volume. However, traditional test methods are often not sufficient to characterize these innovative and mainly polymer-modified materials.

So that modern asphalt and bitumen products meet the high requirements placed on them there is a need for high-performance instruments to investigate and analyze these products in both quality control and during product development. The SmartPave 92 and SmartPave 102e dynamic shear rheometers are able to analyze unmodified as well as modified asphalt binder and bitumen in a wide temperature range, either according to standards or with classic rheological methods.

Anton Paar dynamic shear rheometers have proven themselves worldwide for decades due to numerous innovative technologies like the EC motor, the Toolmaster™ automatic tool recognition system, and the most accurate Peltier temperature control for dry sample thermostatting available. This guarantees unrivaled accuracy, convenience, and ease of use in asphalt and bitumen rheology.

SmartPave 92
Dynamic shear rheometers (DSR)

SmartPave 92 is designed especially for the demands of quality control and routine measurements in asphalt test labs.

For standard asphalt tests according to: AASHTO, ASTM, DIN EN, FGSV, IS, SATS GOST, and AGPT specifications

Temperature range: -5 °C to 200 °C

Designed for the daily lab routine

SmartPave 102e

SmartPave 102e is the instrument which meets the highest measurement demands.

For standard asphalt tests according to: AASHTO, ASTM, DIN EN, FGSV, IS, SATS GOST, and AGPT specifications

Temperature range: -30 °C to 120 °C

Upgradeable to all standard rheological tests

MCR 502e Power

With the modular compact rheometer MCR 502e Power rounding off the portfolio, Anton Paar rheometers meet all the needs emerging from state-of-the-art asphalt and bitumen analysis.

For extensive asphalt tests in research & development

For standard asphalt tests according to: AASHTO, ASTM, DIN EN, FGSV, IS, SATS GOST, and AGPT specifications

Temperature range: -160 °C to 1000 °C

Full rheological characterization of all materials from liquid to solid
Asphalt binder and bitumen testing with the SmartPave series:

Superpave performance grading according to AASHTO T315 / ASTM D7175
Classify asphalt binders relative to their rated performance in a temperature range from 6 °C to 68 °C related to the conditions under which they are used, including environmental conditions and pavement temperatures.

Viscosity determination of asphalt binder according to AASHTO T316 / ASTM D4402 / DIN EN 13702
Use standard testing methods for viscosity determination of asphalt binder with a rotational viscometer/rheometer to research the processability of asphalt binders in a temperature range from 60 °C to 200 °C.

The dynamic shear rheometers (DSR) from Anton Paar are especially designed for the needs and demands of the asphalt industry.
All relevant asphalt binder and bitumen standards can be covered with SmartPave 92, SmartPave 102e, and MCR 502e Power.

Advanced asphalt binder and bitumen testing:

The RheoCompass software: New paths for asphalt and bitumen testing
RheoCompass is a navigation tool that gives you the complete overview as well as the exact insights you require. Designed for intuitive use, the client–and-server–based RheoCompass enables application-oriented template filtering, customized test and analysis definitions, highly simplified data retrieval, a fully automatic and fast temperature calibration and verification routine, and much more.

Full rheological characterization including master curves
Conduct all standard rheological investigations on bitumen and asphalt binders in rotation and oscillation mode like flow curves, 3 internal time tests (SIT), amplitude sweeps, frequency sweeps, temperature tests, master curves, etc.
Fully automatic temperature calibration

Temperature accuracy and stability are crucial in asphalt testing. Properties of asphalt binders are highly sensitive to changes in temperature. The smallest temperature deviations result in vast differences in the measuring results. Anton Paar offers unique fully automatic temperature calibration and verification routines in the RheoCompass software.

The most accurate Peltier temperature control

Temperature has the biggest influence on the rheological investigation of asphalt binders and bitumens. SmartPave 92 and SmartPave 102e’s unique temperature control unit is the first Peltier heating system with heating elements above and below the sample. Temperature gradients are completely eliminated and the heating and cooling rates are very fast. Test times are reduced almost by half, while reproducibility is improved. Due to the unventilated asphalt chamber, there is no water flow around the sample. You can work in a completely dry environment. The annoying noises made by water circulators and blocked water filters are things of the past.

Toolmaster™ – Automatic tool recognition and configuration

Toolmaster™ is the only completely contact-free automatic tool recognition and configuration system for rheometers. It recognizes measuring systems and temperature control units as soon as these are connected to the rheometer so you don’t need to enter any data manually.

Easy-to-use software

The user-friendly rheometer software has been designed specifically for the needs of the asphalt industry. The software consists of predefined, step-by-step instructions for all test types as defined by international asphalt binder specifications.

SmartPave 92 and SmartPave 102e

The best measuring geometry for your needs

Depending on the test method a large selection of measuring systems – parallel plate, cone-plate, and concentric cylinder systems – are available.

Easy fitting of measuring systems

When changing between measuring systems, QuickConnect provides great ease-of-use. The quick-fitting coupling allows one-handed connection of the measuring systems and ensures fast, convenient system changes without a screwing mechanism.

A clear view of your sample

TruRay is a unique lighting concept only available for SmartPave 92 which gives you a clear view of the sample and measurement surface. This is especially useful for the correct and precise filling of the measuring gap.

25 years of experience in one motor

The EC motor (Permanent Magnet Synchronous Motor) deploys a frictionless synchronous movement of the rotor inside that enables the most sensitive and therefore most precise movements. Whether investigating solids or low-viscosity liquids your results are accurate across a wide viscosity range.
Accessories for SmartPave 92 and SmartPave 102e

The most accurate temperature control

Temperature has the biggest influence on rheological investigations on asphalt binders and bitumen. For this reason, Anton Paar offers a wide range of Peltier temperature devices with excellent heating and cooling characteristics.

Peltier temperature control for parallel-plate systems (P-PTD 200) and hood for up to 120 °C (H-PTD 120)
- Truly Peltier-temperature-controlled hood
- Temperature range: -30 °C to 120 °C
- Smallest temperature gradients <0.1 °C according to AASHTO T315
- Dry sample area; no water or gas flow around the sample
- Sliding rail for easy access and sample trimming
- Recommended for all standard applications on bitumen and asphalt binder according to international asphalt binder specifications

Peltier temperature control for parallel-plate systems (P-PTD 200) and hood for up to 200 °C (H-PTD 200)
- Truly Peltier-temperature-controlled hood
- Temperature range: -40 °C to 200 °C
- Smallest temperature gradients <0.1 °C according to AASHTO T315
- Dry sample area; no water or gas flow around the sample
- Sliding rail for easy access and sample trimming
- Recommended for applications on bitumen and asphalt binder in an extended temperature range

Air-cooled Peltier temperature control for parallel-plate systems (P-PTD 200/AIR) and hood for up to 200 °C (H-PTD 200/AIR)
- Truly Peltier-temperature-controlled hood
- Temperature range: -5 °C to 200 °C
- Smallest temperature gradients <0.1 °C according to AASHTO T315
- Dry sample area; no water or gas flow around the sample
- Sliding rail for easy access and sample trimming
- Recommended for all standard applications on bitumen and asphalt binder in an extended temperature range

Peltier temperature control for concentric-cylinder systems (C-PTD 180/AIR)
- Temperature range: 0 °C to 180 °C
- No vertical temperature gradients in the sample due to patented thermal transfer system (US Patent 6,240,770, 1999)
- CoolPeltier™: Peltier temperature control with built-in air-counter-cooling option that requires no additional fluid circulator for counter-cooling
- Temperature range: -5 °C to 200 °C
- Smallest temperature gradients <0.1 °C according to AASHTO T315
- Dry sample area; no water or gas flow around the sample
- Sliding rail for easy access and sample trimming
- Recommended for all standard applications on bitumen and asphalt binder in an extended temperature range
- Suitable for rheological standard applications according to international asphalt binder specifications as well as for GTR-modified (ground tire rubber) asphalt binder with particle sizes up to 2 mm (mesh 10)
- Available for SmartPave 92 only

Peltier-based convection-temperature-control system (CTD 180)
- Temperature range: -20 °C to 180 °C
- Rectangular (SRF) and cylindrical solid torsion (SCF) fixture for dynamic mechanical analysis (DMA)
- Humidity option available

Measuring systems:
- Parallel-plate: PP04 / PP08 / PP25 (other diameters on request)
- Cone-plate: different diameters and angles on request
- Concentric-cylinder: CC10 / CC17 / CC27 (other diameters on request)
- Special concentric cylinders for GTR-modified (ground tire rubber) asphalt binder testing: CC10SP / CC17SP
Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Unit</th>
<th>SmartPave 92</th>
<th>SmartPave 102e</th>
<th>MCR 502e Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing design</td>
<td></td>
<td>Air, fine-pored carbon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor design</td>
<td></td>
<td>Electronically Commutated (EC) - Permanent Magnet Synchronous Motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displacement transducer design</td>
<td></td>
<td>High-resolution optical encoder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal force measurement design</td>
<td></td>
<td>360° capacitive sensor, non-contacting, fully integrated in bearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working mode</td>
<td></td>
<td>Combined Motor Transducer (CMT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum torque (rotation)</td>
<td>nNm</td>
<td>1 µNm</td>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td>Minimum torque (oscillation)</td>
<td>nNm</td>
<td>1 µNm</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Maximum torque</td>
<td>nNm</td>
<td>125</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>Minimum angular deflection (set value)</td>
<td>µrad</td>
<td>1</td>
<td>0.5</td>
<td>0.05</td>
</tr>
<tr>
<td>Maximum angular deflection (set value)</td>
<td>µrad</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minimum angular velocity(^1)</td>
<td>rad/s</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maximum angular velocity(^1)</td>
<td>rad/s</td>
<td>157</td>
<td>314</td>
<td>220</td>
</tr>
<tr>
<td>Minimum speed</td>
<td>m/min</td>
<td>1500</td>
<td>3000</td>
<td>2100</td>
</tr>
<tr>
<td>Maximum speed</td>
<td>m/min</td>
<td>(10^{-3})</td>
<td>(10^{-2})</td>
<td>(10^{-1})</td>
</tr>
<tr>
<td>Minimum angular frequency(^2)</td>
<td>rad/s</td>
<td>(10^{-3})</td>
<td>(10^{-2})</td>
<td>(10^{-1})</td>
</tr>
<tr>
<td>Maximum angular frequency(^2)</td>
<td>rad/s</td>
<td>628</td>
<td>628</td>
<td>628</td>
</tr>
<tr>
<td>Maximum frequency(^2)</td>
<td>Hz</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Normal force range</td>
<td>N</td>
<td>-50 to 50</td>
<td>-70 to 70</td>
<td>-70 to 70</td>
</tr>
<tr>
<td>Minimum gap size change</td>
<td>µm</td>
<td>0.625</td>
<td>0.625</td>
<td>0.625</td>
</tr>
<tr>
<td>Dimensions (W x H x D)</td>
<td>mm</td>
<td>380 x 660 x 530</td>
<td>444 x 678 x 586</td>
<td>444 x 753 x 586</td>
</tr>
<tr>
<td>Weight</td>
<td>kg</td>
<td>33</td>
<td>42</td>
<td>47</td>
</tr>
</tbody>
</table>

Additional device features

- Device display with remote control of software (decoupled from measuring sensor for mechanical and electromagnetic interference prevention)
- Direct strain/stress controller
- TruStrain™ (sample-adaptive controller)
- TruRate™ (sample-adaptive controller)
- Raw data (LAOS, waveform)
- Normal force profiles (set and read)
- Velocity profiles, tack, squeeze
- Automatic gap control/setting (AGC/AGS)
- Electronic trim lock for measuring geometry
- TruGap™ (permanent control of the real measuring gap) (US Pat. 6496836, 2000)
- T-Ready™ (detection of sample temperature equilibrium time) (US Pat. 8904852, 2014)
- QuickConnect coupling for measuring geometries (one-hand operation, screwless)
- Trimming mirror (300° sample blind spot prevention)
- Three-point support of device (three robust feet for tool-free on-hand alignment)
- Three-point support for mounting of measuring cells (wobble prevention, no misalignment after changing of cells)
- Maximum temperature range\(^3\)
- Virtually gradient-free temperature control (horizontal, vertical)

Additional features

- Temperature gradient <0.1 °C according to AASHTO and ASTM
- CoolPak™: Putter system with built-in cooling option that does not require additional accessories for counter-cooling
- SafeGap™ normal force limiter during gap setting
- TruRay™: dimmable illumination of sample area
- RheoCompass software
- Asphalt standard operation procedures (SOP) with regular updates
- Auto-update via network
- Fully automatic temperature calibration
- Test and analysis designer
- Report designer (with all test information for export and print)
- Managed lab multiple clients and servers
- Maximum temperature range
- Pressure Cell
- SafeGap™ normal force limiter during gap setting
- TruRay™: dimmable illumination of sample area

Applications

- AASHTO T315 / ASTM D7175 / GOST R58400.10 (SHRP-Test/SuperPave PG)
- AASHTO T316 / ASTM D4402
- DIN EN 13302 & 13702 / GOST 35137 (Rotational Viscosity)
- AASHTO T350 / ASTM D7405
- DIN EN 16659 / GOST R58400.6 (MSCR-Test)
- AASHTO TP101-L (LAS-Test) / GOST R58400.7
- AASHTO TP116
- AASHTO TP123
- ASTM D7552
- GOST 58400.9
- FGSV AL 721 BTSV
- FGSV AL 721 (Constant Shear Rate)
- FGSV AL 722 (Temperature Sweep)
- FGSV AL 723 (MSCR-Test)
- ASPPT/T125 Stress ratio of Bituminous Binder
- ASPPT/T102 Viscosity of RAP Binder
- ASPPT/T104 Aging Resistance of Bitumen Using PAV and DSR
- Master Curves
- Measurement of rubber-modified bitumen
- Low-temperature measurements -30 °C parallel plate
- Low-temperature measurements -20 °C (torsion)

Legend

- **\(\bigstar\):** optional
- **\(^\wedge\):** not available
- **\(\bigstar\):** included

The DSR is among others part of the following asphalt binder specifications: AASHTO M320, AASHTO M332, ASTM D6373, ASTM D8230, AGPT/ T190, GOST R58400.1-2019, IS 15460, IS 73.

\(^1\) In controlled shear stress (CSS) mode. In controlled shear rate (CSR) mode depending on measuring point duration and sampling rate.
\(^2\) Theoretical value (duration per cycle = 2 years)
\(^3\) Higher frequencies are possible using multi-wave functionality (942 rad/s (150 Hz) or even higher, depending on measuring system and sample)
\(^4\) Depending on used temperature device
\(^5\) TruRate™ required

SmartPave (016731556) and RheoCompass (9177015) are registered trademarks of Anton Paar.